Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 276
Filtrar
1.
Opt Express ; 32(6): 9105-9115, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38571151

RESUMO

The strong interaction between light and matter is one of the current research hotspots in the field of nanophotonics, and provides a suitable platform for fundamental physics research such as on nanolasers, high-precision sensing in biology, quantum communication and quantum computing. In this study, double Rabi splitting was achieved in a composite structure monolayer MoS2 and a single Ag@Au hollow nanocube (HNC) in room temperature mainly due to the two excitons in monolayer MoS2. Moreover, the tuning of the plasmon resonance peak was realized in the scattering spectrum by adjusting the thickness of the shell to ensure it matches the energy of the two excitons. Two distinct anticrossings are observed at both excitons resonances, and large double Rabi splittings (90 meV and 120 meV) are obtained successfully. The finite-difference time domain (FDTD) method was also used to simulate the scattering spectra of the nanostructures, and the simulation results were in good agreement with the experimental results. Additionally, the local electromagnetic field ability of the Ag@Au hollow HNC was proved to be stronger by calculating and comparing the mode volume of different nanoparticles. Our findings provides a good platform for the realization of strong multi-mode coupling and open up a new way to construct nanoscale photonic devices.

2.
J Colloid Interface Sci ; 664: 469-477, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38484515

RESUMO

Transition metal oxides have been acknowledged for their exceptional water splitting capabilities in alkaline electrolytes, however, their catalytic activity is limited by low conductivity. The introduction of sulfur (S) into nickel molybdate (NiMoO4) at room temperature leads to the formation of sulfur-doped NiMoO4 (S-NiMoO4), thereby significantly enhancing the conductivity and facilitating electron transfer in NiMoO4. Furthermore, the introduction of S effectively modulates the electron density state of NiMoO4 and facilitates the formation of highly active catalytic sites characterized by a significantly reduced hydrogen absorption Gibbs free energy (ΔGH*) value of -0.09 eV. The electrocatalyst S-NiMoO4 exhibits remarkable catalytic performance in promoting the hydrogen evolution reaction (HER), displaying a significantly reduced overpotential of 84 mV at a current density of 10 mA cm-2 and maintaining excellent durability at 68 mA cm-2 for 10 h (h). Furthermore, by utilizing the anodic sulfide oxidation reaction (SOR) instead of the sluggish oxygen evolution reaction (OER), the assembled electrolyzer employing S-NiMoO4 as both the cathode and anode need merely 0.8 V to achieve 105 mA cm-2, while simultaneously producing hydrogen gas (H2) and S monomer. This work paves the way for improving electron transfer and activating active sites of metal oxides, thereby enhancing their HER activity.

3.
Nanoscale ; 16(12): 5960-5975, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38446099

RESUMO

As the most common nonlinear optical process, second harmonic generation (SHG) has important application value in the field of nanophotonics. With the rapid development of metal nanomaterial processing and chemical preparation technology, various structures based on metal nanoparticles have been used to achieve the enhancement and modulation of SHG. In the field of nonlinear optics, plasmonic metal nanostructures have become potential candidates for nonlinear optoelectronic devices because of their highly adjustable physical characteristics. In this article, first, the basic optical principles of SHG and the source of surface symmetry breaking in metal nanoparticles are briefly introduced. Next, the related reports on SHG in metal nanostructures are reviewed from three aspects: the enhancement of SHG efficiency by double resonance structures, the SHG effect based on magnetic resonance and the harmonic energy transfer. Then, the applications of SHG in the sensing, imaging and in situ monitoring of metal nanostructures are summarized. Future opportunities for SHG in composite systems composed of metal nanostructures and two-dimensional materials are also proposed.

4.
J Pharm Sci ; 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38555998

RESUMO

Although gemcitabine (GEM) is a first-line chemotherapeutic drug in treating pancreatic cancer, the therapeutic efficacy of GEM is relatively poor. One main reason is that GEM can be easily deaminated to inactive 2',2'-difluorodeoxyuridine (dFdU) by cytidine deaminase (CDA). In order to improve the antitumor activity of GEM, a polypeptide modified GEM prodrug RGDGFLG-GEM (GEM-RGD) is designed. Because the amino group of GEM is protected by RGDGFLG peptide sequence, the in vivo stability of GEM-RGD can be significantly improved since the deamination of GEM can be avoided. GEM-RGD shows enhanced uptake by pancreatic cancer cells due to the active targeting RGD group. The cathepsin B-sensitive GFLG sequence endows GEM-RGD with specific release of GEM in pancreatic cancer cells. Compared to free GEM and non-targeted GEM prodrug RDGGFLG-GEM (GEM-RDG), GEM-RGD exhibits enhanced antitumor activity and reduced systemic toxicity. These results implies that GEM-RGD is a promising candidate in treating pancreatic cancer.

5.
bioRxiv ; 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38352361

RESUMO

Natural killer (NK) cells are currently in use as immunotherapeutic agents for cancer. Many different cytokines are used to generate NK cells including IL-2, IL-12, IL-15 and IL-18 in solution and membrane bound IL-21. These cytokines drive NK cell activation through the integration of STAT and NF-κB pathways, which overlap and synergize, making it challenging to predict optimal cytokine combinations. We integrated functional assays for NK cells cultured in a variety of cytokine combinations with feature selection and mechanistic regression models. Our regression model successfully predicts NK cell proliferation for different cytokine combinations and indicates synergy between STAT3 and NF-κB transcription factors. Use of IL-21 in solution in the priming, but not post-priming phase of NK cell culture resulted in optimal NK cell proliferation, without compromising cytotoxicity or IFN-γ secretion against hepatocellular carcinoma cell lines. Our work provides a mathematical framework for interrogating NK cell activation for cancer immunotherapy.

6.
BMJ Neurol Open ; 6(1): e000498, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38361966

RESUMO

Background: Sialidosis is a rare disorder caused by mutations in the NEU1 gene located on chromosome 6p21.3, constituting a group of autosomal recessive diseases. Enzyme activity analysis, electron microscopy examination and genetic testing are reliable methods for diagnosis. Despite previous reports on the disease, its rarity means that its clinical manifestations and prognosis still warrant attention due to the limited amount of information available. Methods: We report a case of a 40-year-old woman who was admitted to our hospital for worsening dysarthria of 16 years duration and facial and limb twitching that had been present for 2 years. Genetic testing was undertaken. Results: Genetic testing confirmed type I sialidosis, the first reported instance of this disease in the Hainan Free Trade Port in China. The patient did not have the typical cherry-red spot in the fundus. Despite aggressive treatment, she died of status epilepticus 2 months later. This result indicates that the disease has a poor prognosis. Discussion: Cherry-red spots in the fundus are characteristic features of type I sialidosis and it has been referred to as the cherry-red spot myoclonus syndrome. We hypothesise that environmental factors may also play a significant role. Overemphasis on the presence of cherry-red spots may mislead clinicians and delay diagnosis. Furthermore, patients presenting with isolated myoclonus should undergo visual evoked potential and somatosensory evoked potential tests, as well as genetic testing to confirm or rule out sialidosis.

7.
Carbohydr Polym ; 331: 121888, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38388042

RESUMO

Bioplastics have aroused significant interest in researchers to relieve the serious environmental pollution caused by the ubiquity of petroleum-based plastics. However, it remains a great challenge to construct functional bioplastics with excellent mechanical strength, water resistance, and heat resistance. Inspired by the interesting structure of nacre, a novel starch-based bioplastic was prepared via a self-assembly technique, using 2,2,6,6-tetramethylpiperidine-1-oxy-oxidized cellulose nanofibers modified starch, nano-montmorillonite, and reduced graphene oxide as raw materials. Due to the unique layered structure and rich interfacial interaction, the starch-based bioplastic exhibited excellent mechanical properties, while the tensile strength was up to 37.39 MPa. Furthermore, it represented outstanding water resistance, heat resistance, repairability, renewability and biodegradability. Especially, the starch-based bioplastic demonstrated a strong electromagnetic interference shielding effectiveness (EMI SE), which was higher than 35 dB with a thickness of 0.5 mm. These powerful properties provided the possibility for functional applications of starch-based bioplastics.

8.
Bone Marrow Transplant ; 59(4): 489-495, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38253870

RESUMO

Acute myeloid leukemia (AML) still constitutes a dreadful disease with limited therapeutic options. Chimeric antigen receptor (CAR)-modified T cells struggle to target AML partly due to a lack of true AML-exclusive antigens and heterogeneity of the disease. Natural killer (NK) cells possess a high intrinsic killing capacity against AML and might be well suited for the treatment of this disease. However, the generation of primary CAR-NK cells can be difficult and time consuming. Therefore, robust systems for the generation of high numbers of CAR-NK cells under GMP conditions are required. Here we report on the automated generation of high numbers of primary CD33-targeting CAR-NK cells using the CliniMACS Prodigy® platform. Automated-produced CD33-CAR-NK cells showed similar phenotype and cytotoxicity compared to small-scale-produced CD33-CAR-NK cells in vitro and were able to strongly reduce leukemic burden in an OCI-AML2 NSG-SGM3 xenograft mouse model in vivo following a cross-site shipment of the cell product. This technology might be well suited for the generation of primary CAR-modified NK cells for a broad range of targets and could facilitate clinical transition.


Assuntos
Células Matadoras Naturais , Leucemia Mieloide Aguda , Humanos , Animais , Camundongos , Linhagem Celular Tumoral , Leucemia Mieloide Aguda/genética , Imunoterapia Adotiva
9.
Chem Commun (Camb) ; 60(8): 992-995, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38168667

RESUMO

Herein, we report an efficient and easily operable method to halohydroxylate pyridiniums through an interrupted dearomative reduction strategy. In this process, we make the most of the halide anion from the pyridinium salts by performing the reaction in DMSO without the need of external HX added. Notably, by changing the solvents from DMSO into Et2O, the bimolecular C3-C2 coupling occurs successfully.

10.
Phytomedicine ; 123: 155183, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37992491

RESUMO

BACKGROUND: Nonalcoholic fatty liver disease (NAFLD) is the leading cause of chronic liver disease worldwide. Shenge Formula (SGF) is a traditional Chinese medicine that has been used in the clinical treatment of NAFLD, and its therapeutic potential in patients and NAFLD animal models has been demonstrated in numerous studies. However, its underlying mechanism for treating NAFLD remains unclear. PURPOSE: The aim of this study was to investigate the mechanism of SGF in the treatment of NAFLD using the proteomics strategy. METHODS: Ultra-high performance liquid chromatography-mass spectrometry (UPLC-MS) was used to determine the main components of SGF. A mouse model of nonalcoholic fatty liver disease was constructed by feeding mice with a high-fat diet for 16 weeks. SGF was administered for an additional 8 weeks, and metformin was used as a positive control. Liver sections were subjected to histopathological assessments. LC-MS/MS was used for the label-free quantitative proteomic analysis of liver tissues. Candidate proteins and pathways were validated both in vivo and in vitro through qRT-PCR, western blot, and immunohistochemistry. The functions of the validated pathways were further investigated using the inhibition strategy. RESULTS: Thirty-nine ingredients were identified in SGF extracts, which were considered to be key compounds in the treatment of NAFLD. SGF administration attenuated obesity and fatty liver by reducing the body weight and liver weight in HFD-fed mice. It also relieved HFD-induced insulin resistance. More importantly, hepatic steatosis was significantly attenuated by SGF administration both in vivo and in vitro. Proteomic profiling of mouse liver tissues identified 184 differential expressed proteins (DEPs) associated with SGF treatment. Bioinformatic analysis of DEPs revealed that regulating the lipid metabolism and energy consumption process of hepatocytes was the main role of SGF in NAFLD treatment. This also indicated that ACOX1 might be the potential target of SGF, which was subsequently verified both in vitro and in vivo. The results demonstrated that SGF inhibited ACOX1 activity, thereby activating PPARα and upregulating CPT1A expression. Increased CPT1A expression promoted mitochondrial ß-oxidation, leading to reduced lipid accumulation in hepatocytes. CONCLUSIONS: Overall, our findings confirmed the protective effect of SGF against NAFLD and revealed the underlying molecular mechanism of regulating lipid metabolism.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/patologia , Dieta Hiperlipídica/efeitos adversos , Cromatografia Líquida , Proteômica , Espectrometria de Massas em Tandem , Fígado , Metabolismo dos Lipídeos , Obesidade/complicações , Camundongos Endogâmicos C57BL
11.
Sci Total Environ ; 912: 168898, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38016545

RESUMO

Mainstream P-recovery can help wastewater treatment plants (WWTPs) to effectively maintain good enhanced biological phosphorus removal (EBPR) while helping to recover P. In this study, a pilot-scale anaerobic-anoxic-aerobic (A2O) process was operated for simultaneous COD/N/P removal and P-recovery under different operational conditions. The operation with conventional extraction of waste activated sludge (WAS) from the aerobic reactor was compared to the mainstream P-recovery strategy of WAS extraction from the anaerobic reactor. Successful nutrient removal was obtained for both scenarios, but the anaerobic WAS extraction results improved polyphosphate accumulating organisms (PAOs) activity by increasing almost 27 % P concentration in the anaerobic reactor. WAS fermentation was also evaluated, showing that anaerobic WAS required only 3 days to reach a high P concentration, while the aerobic WAS fermentation required up to 7 days. The fermentation process increased the amount of soluble P available for precipitation from 24.4 % up to 51.6 % in the fermented anaerobic WAS scenario. Results obtained by precipitation modelling of these streams showed the limitations for struvite precipitation due to Ca2+ interference and Mg2+ and NH4+ as limiting species. The optimum precipitation scenario showed that P-recovery could reach up to 51 % of the input P, being 90 % struvite.


Assuntos
Reatores Biológicos , Esgotos , Humanos , Anaerobiose , Estruvita , Hipóxia , Fósforo , Eliminação de Resíduos Líquidos/métodos
12.
JACC Basic Transl Sci ; 8(11): 1457-1472, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38093741

RESUMO

Palmd-deficient mice of advanced age manifest increased aortic valve peak velocity, thickened aortic valve leaflets, and excessive extracellular matrix deposition, which are key features of calcific aortic valve disease. PALMD is predominantly expressed in endothelial cells of aortic valves, and PALMD-silenced valvular endothelial cells are prone to oscillatory shear stress-induced endothelial-to-mesenchymal transition. Mechanistically, PALMD is associated with TNFAIP3 interaction protein 1, a binding protein of TNFAIP3 and IKBKG in NF-κB signaling. Loss of PALMD impairs TNFAIP3-dependent deubiquitinating activity and promotes the ubiquitination of IKBKG and subsequent NF-κB activation. Adeno-associated virus-mediated PALMD overexpression ameliorates aortic valvular remodeling in mice with calcific aortic valve disease, indicating protection.

13.
J Am Chem Soc ; 145(47): 25513-25517, 2023 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-37955622

RESUMO

Amino compounds are widely present in complex mixtures in chemistry, biology, medicine, food, and environmental sciences involving drug impurities and metabolisms of proteins, biogenic amines, neurotransmitters, and pyrimidine in biological systems. Nuclear magnetic resonance (NMR) spectroscopy is an excellent tool for simultaneously identifying and quantifying these in-mixture compounds but has a limit-of-detection (LOD) over several micromolarities (>5 µM). To break such a sensitivity barrier, we developed a sensitive and rapid method by combining the probe-induced sensitivity enhancement and nonuniform-sampling-based 1H-13C HSQC 2D-NMR (PRISE-NUS-HSQC). We introduced two 13CH3 tags for each analyte to respectively increase the 1H and 13C abundances for up to 6 and 200 fold. This enabled high-resolution detection of 0.4-0.8 µM analytes in mixtures in 5 mm tubes with a 5 min acquisition on 600 MHz spectrometers. The method is much more sensitive and faster than traditional 1H-13C HSQC methods (∼50 µM, >10 h). Using sulfanilic acid as a single reference, furthermore, we established a database covering chemical shifts and relative-response factors for >100 compounds, enabling reliable identification and quantification. The method showed good quantitation linearity, accuracy, precision, and applicability in multiple biological matrices, offering a rapid and sensitive approach for quantitative analysis of large cohorts of chemical, medicinal, metabolomic, food, and other mixtures.


Assuntos
Imageamento por Ressonância Magnética , Proteínas , Espectroscopia de Ressonância Magnética/métodos , Metabolômica/métodos , Misturas Complexas
14.
Signal Transduct Target Ther ; 8(1): 394, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37828006

RESUMO

Immune cell infiltration in response to myocyte death regulates extracellular matrix remodeling and scar formation after myocardial infarction (MI). Caspase-recruitment domain family member 9 (CARD9) acts as an adapter that mediates the transduction of pro-inflammatory signaling cascades in innate immunity; however, its role in cardiac injury and repair post-MI remains unclear. We found that Card9 was one of the most upregulated Card genes in the ischemic myocardium of mice. CARD9 expression increased considerably 1 day post-MI and declined by day 7 post-MI. Moreover, CARD9 was mainly expressed in F4/80-positive macrophages. Card9 knockout (KO) led to left ventricular function improvement and infarct scar size reduction in mice 28 days post-MI. Additionally, Card9 KO suppressed cardiomyocyte apoptosis in the border region and attenuated matrix metalloproteinase (MMP) expression. RNA sequencing revealed that Card9 KO significantly suppressed lipocalin 2 (Lcn2) expression post-MI. Both LCN2 and the receptor solute carrier family 22 member 17 (SL22A17) were detected in macrophages. Subsequently, we demonstrated that Card9 overexpression increased LCN2 expression, while Card9 KO inhibited necrotic cell-induced LCN2 upregulation in macrophages, likely through NF-κB. Lcn2 KO showed beneficial effects post-MI, and recombinant LCN2 diminished the protective effects of Card9 KO in vivo. Lcn2 KO reduced MMP9 post-MI, and Lcn2 overexpression increased Mmp9 expression in macrophages. Slc22a17 knockdown in macrophages reduced MMP9 release with recombinant LCN2 treatment. In conclusion, our results demonstrate that macrophage CARD9 mediates the deterioration of cardiac function and adverse remodeling post-MI via LCN2.


Assuntos
Traumatismos Cardíacos , Infarto do Miocárdio , Animais , Camundongos , Proteínas Adaptadoras de Sinalização CARD , Lipocalina-2/genética , Macrófagos/metabolismo , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Infarto do Miocárdio/metabolismo
15.
Phytomedicine ; 121: 155111, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37804819

RESUMO

BACKGROUND: Current evidence indicates a rising global prevalence of Non-Alcoholic Fatty Liver Disease (NAFLD), which is closely associated to conditions such as obesity, dyslipidemia, insulin resistance, and metabolic syndrome. The relationship between the gut microbiome and metabolites in NAFLD is gaining attention understanding the pathogenesis and progression of dysregulated lipid metabolism and inflammation. The Xie Zhuo Tiao Zhi (XZTZ) decoction has been employed in clinical practice for alleviating hyperlipidemia and symptoms related to metabolic disorders. However, the pharmacological mechanisms underlying the effects of XZTZ remain to be elucidated. PURPOSE: The objective of this study was to examine the pharmacological mechanisms underlying the hypolipidemic and anti-inflammatory effects of XZTZ decoction in a mouse model of NAFLD, as well as the effects of supplementing exogenous metabolites on PO induced cell damage and lipid accumulation in cultured hepatocytes. METHODS: A high-fat diet (HFD) mouse model was established to examine the effects of XZTZ through oral gavage. The general condition of mice and the protective effect of XZTZ on liver injury were evaluated using histological and biochemical methods. Hematoxylin and eosin staining (H&E) staining and oil red O staining were performed to assess inflammatory and lipid accumulation detection, and cytokine levels were quantitatively analyzed. Additionally, the study included full-length 16S rRNA sequencing, liver transcriptome analysis, and non-targeted metabolomics analysis to investigate the relationship among intestinal microbiome, liver metabolic function, and XZTZ decoction. RESULTS: XZTZ had a significant impact on the microbial community structure in NAFLD mice. Notably, the abundance of Ileibacterium valens, which was significantly enriched by XZTZ, exhibited a negative correlation with liver injury biomarkers such as, alanine transaminase (ALT) and aspartate transaminase (AST) activity. Moreover, treatment with XZTZ led to a significant enrichment of the purine metabolism pathway in liver tissue metabolites, with inosine, a purine metabolite, showing a significant positive correlation with the abundance of I. valens. XZTZ and inosine also significantly enhanced fatty acid ß-oxidation, which led to a reduction in the expression of pro-inflammatory cytokines and the inhibition of liver pyroptosis. These effects contributed to the mitigation of liver injury and hepatocyte damage, both in vivo and vitro. Furthermore, the utilization of HPLC fingerprints and UPLC-Q-TOF-MS elucidated the principal constituents within the XZTZ decoction, including naringin, neohesperidin, atractylenolide III, 23-o-Acetylalisol B, pachymic acid, and ursolic acid which are likely responsible for its therapeutic efficacy. Further investigations are imperative to fully uncover and validate the pharmacodynamic mechanisms underlying these observations. CONCLUSION: The administration of XZTZ decoction demonstrates a protective effect on the livers of NAFLD mice by inhibiting lipid accumulation and reducing hepatocyte inflammatory damage. This protective effect is mediated by the upregulation of I.valens abundance in the intestine, highlighting the importance of the gut-liver axis. Furthermore, the presesnce of inosine, adenosine, and their derivatives are important in promoting the protective effects of XZTZ. Furthermore, the in vitro approaching, we provide hitherto undocumented evidence indicating that the inosine significantly improves lipid accumulation, inflammatory damage, and pyroptosis in AML12 cells incubated with free fatty acids.


Assuntos
Microbioma Gastrointestinal , Hepatopatia Gordurosa não Alcoólica , Animais , Camundongos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Piroptose , RNA Ribossômico 16S , Fígado , Metabolismo dos Lipídeos , Dieta Hiperlipídica/efeitos adversos , Ácidos Graxos não Esterificados/metabolismo , Purinas/farmacologia , Inosina/metabolismo , Inosina/farmacologia , Inosina/uso terapêutico , Camundongos Endogâmicos C57BL
16.
Medicine (Baltimore) ; 102(42): e34988, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37861560

RESUMO

RATIONALE: Refractory hypotension is a life-threatening condition that can result from various causes. We report a rare case of refractory hypotension following herpes simplex virus type 1 encephalitis that was successfully treated with hormone therapy. PATIENT CONCERNS: The patient was a 66-year-old male who was admitted to the hospital because of fever, chills, convulsions, and impaired consciousness. He developed respiratory failure and was intubated. Cerebrospinal fluid metagenomic sequencing confirmed herpes simplex virus type 1 infection. He received piperacillin-tazobactam for anti-infection, acyclovir for antiviral therapy, and dexamethasone for anti-inflammatory therapy. He had repeated episodes of hypotension despite fluid resuscitation and vasopressor therapy. DIAGNOSIS: The diagnosis of herpes simplex virus type 1 encephalitis complicated by refractory hypotension was based on the patient's epidemiological history, clinical manifestations, laboratory tests, and imaging studies. Cerebrospinal fluid examination was the most important diagnostic method, which could detect viral nucleic acids. Head magnetic resonance imaging showed a large recent lesion in the right temporal-parietal and insular lobes. INTERVENTIONS: The treatment of refractory hypotension mainly included anti-infection, antiviral, anti-inflammatory, and hormone therapy. Hormone therapy used methylprednisolone shock treatment until tapering withdrawal. Other treatments included fluid resuscitation, vasopressors, anticonvulsants, etc. OUTCOMES: The patient's blood pressure stabilized after receiving methylprednisolone shock treatment, and his mean arterial pressure increased from 73 mm Hg to 92 mm Hg within 24 hours. Three months later, the patient's blood pressure was normal without medication, and he had a good social and physical recovery. LESSONS: This case illustrates the possible role of hormone therapy in restoring blood pressure in patients with refractory hypotension following viral encephalitis. It suggests that adrenal insufficiency or autonomic dysfunction may be involved in the pathophysiology of this condition. Further studies are needed to confirm the efficacy and safety of hormone therapy in this setting.


Assuntos
Encefalite por Herpes Simples , Encefalite Viral , Hipotensão , Masculino , Humanos , Idoso , Aciclovir/uso terapêutico , Encefalite por Herpes Simples/tratamento farmacológico , Encefalite Viral/diagnóstico , Encefalite Viral/tratamento farmacológico , Metilprednisolona/uso terapêutico , Hipotensão/etiologia , Hipotensão/complicações , Anti-Inflamatórios/uso terapêutico , Hormônios/uso terapêutico , Antivirais/uso terapêutico
18.
Acta Neurobiol Exp (Wars) ; 83(3): 317-330, 2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37874186

RESUMO

This study explored the protective effect and mechanism of hydrogen­rich saline (HRS) on the neurological function of mice with cerebral ischemia. Effects of HRS on neurological function in mice with cerebral ischemia were evaluated by neurological function scores. Infarct volume and histological damage were evaluated by 2,3,5­triphenyl tetrazolium chloride staining (TTC staining). Golgi­Cox staining was conducted to measure the morphological changes of neuronal dendrites and dendritic spines. The expression of neuronal markers was detected by immunofluorescence. Western blot was used to detect protein expression. The infarct volume of mice in the HRS­H group decreased significantly compared to that of the distal middle cerebral artery occlusion (dMCAO) group. Mice in the HRS­H group had a lower neurological deficit score than that in the dMCAO group. Compared to the dMCAO group, the activity of superoxide dismutase (SOD) and the level of glutathione (GSH) significantly increased in the HRS­H group. Compared with the dMCAO group, the number of apoptotic cells in the HRS­H group decreased. Administration of HRS was shown to be able to decrease cavitation of the brain cortex after ischemia. The spine density in the HRS­H group increased compared to that of the dMCAO group. In the in vitro experiment, compared with the oxygen­glucose deprivation (OGD) group, the active oxygen content in the 75% HRM group decreased, and the mitochondrial membrane potential and adenosine triphosphate (ATP) content increased. Compared with the OGD group, the ratio of P­AMPK and the levels of LC3II/LC3I in the hydrogen­rich medium (HRM) group was upregulated, and P­mTOR levels and P62 levels in the HRM group were down­regulated. HRS can enhance neuroplasticity after ischemia and promote neurological recovery in mice with cerebral ischemia, which may involve the autophagy pathway mediated by the AMPK/mTOR signaling pathway.


Assuntos
Proteínas Quinases Ativadas por AMP , Isquemia Encefálica , Animais , Camundongos , Proteínas Quinases Ativadas por AMP/metabolismo , Autofagia , Infarto da Artéria Cerebral Média , Isquemia , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
19.
Cancers (Basel) ; 15(17)2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37686586

RESUMO

In contrast to T lymphocytes, natural killer (NK) cells do not require prior sensitization but are rapidly activated upon encountering virally infected or neoplastic cells. In addition, NK cells can be safely applied in an allogeneic setting, making them important effector cells for the development of off-the-shelf therapeutics for adoptive cancer immunotherapy. To further enhance their therapeutic potential, here, we engineered continuously expanding NK-92 cells as a clinically relevant model to express a humanized second-generation chimeric antigen receptor (CAR) with a composite CD28-CD3ζ signaling domain (hu14.18.28.z) that targets the disialoganglioside GD2, which is expressed at high levels by neuroblastoma cells and other tumors of neuroectodermal origin. In a separate approach, we fused an IL-15 superagonist (RD-IL15) to the GD2-CAR via a P2A processing site. Lentivirally transduced NK-92/hu14.18.28.z and NK-92/hu14.18.28.z_RD-IL15 cells both displayed high and stable CAR surface expression and specific cytotoxicity toward GD2-positive tumor cells. GD2-CAR NK cells carrying the RD-IL15 construct in addition expressed the IL-15 superagonist, resulting in self-enrichment and targeted cell killing in the absence of exogenous IL-2. Furthermore, co-culture with RD-IL15-secreting GD2-CAR NK cells markedly enhanced proliferation and cytotoxicity of bystander immune cells in a paracrine manner. Our results demonstrate that GD2-CAR NK cells co-expressing the IL-15 superagonist mediate potent direct and indirect antitumor effects, suggesting this strategy as a promising approach for the further development of functionally enhanced cellular therapeutics.

20.
J Biol Chem ; 299(10): 105226, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37673339

RESUMO

Successful muscle regeneration following injury is essential for functional homeostasis of skeletal muscles. Krüppel-like factor 15 (KLF15) is a metabolic transcriptional regulator in the muscles. However, little is known regarding its function in muscle regeneration. Here, we examined microarray datasets from the Gene Expression Omnibus database, which indicated downregulated KLF15 in muscles from patients with various muscle diseases. Additionally, we found that Klf15 knockout (Klf15KO) impaired muscle regeneration following injury in mice. Furthermore, KLF15 expression was robustly induced during myoblast differentiation. Myoblasts with KLF15 deficiency showed a marked reduction in their fusion capacity. Unbiased transcriptome analysis of muscles on day 7 postinjury revealed downregulated genes involved in cell differentiation and metabolic processes in Klf15KO muscles. The FK506-binding protein 51 (FKBP5), a positive regulator of myoblast differentiation, was ranked as one of the most strongly downregulated genes in the Klf15KO group. A mechanistic search revealed that KLF15 binds directly to the promoter region of FKBP5 and activates FKBP5 expression. Local delivery of FKBP5 rescued the impaired muscle regeneration in Klf15KO mice. Our findings reveal a positive regulatory role of KLF15 in myoblast differentiation and muscle regeneration by activating FKBP5 expression. KLF15 signaling may be a novel therapeutic target for muscle disorders associated with injuries or diseases.


Assuntos
Mioblastos , Proteínas de Ligação a Tacrolimo , Animais , Humanos , Camundongos , Diferenciação Celular/genética , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Camundongos Knockout , Músculo Esquelético/metabolismo , Mioblastos/metabolismo , Regeneração/genética , Proteínas de Ligação a Tacrolimo/metabolismo , Masculino , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...